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LE'ITER TO THE EDITOR 

Static critical exponents from the dynamics of damage 
spreading and overhangs in the Ising model with 
temperature gradient 
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t Thinking Machines Corporation, 245 Fint Street, Cambridge, MA 02142, USA * Groupe de MatiiZre Condenste et Mattriaun (URA CNRS 8 0 4 ) .  Universitt de Rennes 
1, BPtiment Ilb, Campus de Beaulieu, F-35042 Rennes Cedex, France 

Received 1~Ap"l 1-99? 

Abslmct. By studying damage spreading in spin models in a temperature gradient, it is 
possible to determine not only the critical temperature, and the correlation length exponent 
U, but also a second critical exponent p with high precision. l%is is done by studying the 
dynamics of damage spreading, in particular the overhangs which develop in the damage 
front. We demonstrate the method for the two-dimensional Ising model using heat bath 
dynamics. and discuss differences with Metropolis dynamics. 

The aim of this letter is to introduce a new numerical technique to determine critical 
exponents in spin models, based on damage spreading [I]  in a temperature gradient 
[Z] and overhang statistics [3,4], first developed in connection with cellular automata. 
It is simple to implement, simple to analyse, and leads to precise results with only 
little computational effort. 

We will use in this letter the two-dimensional king model as a testing ground for 
our method. The spin ui, associated with node i in a square lattice, takes on either of 
the two values f l .  Interactions between the spins are described through the Hamiltonian 
H = -& u#q where (ij) indicates nearest neighbours. In order to model the 
behaviour of this system at a finite temperature T, we use heat bath dynamics [5]. For 
each node i, a random number O<ri ( t )< l  is generated. If r , ( t ) < p , ( t ) =  
(I+exp[-22cii,q(t)/T])-', the spin u ( ( t + l )  is set to +1, otherwise it is set to -1. t 
refers to Monte Carlo time. 

The concept of 'damage' in the king model refers to the following construction 
[l]. Two lattices A and E, of equal size, are initialized in states { u f ( O ) }  and {u:(O)). 
Both lattices are then subjected to the same dynamics, including using the same series 
of random numbers r j ( t ) .  The damage associated with node i is defined as d , ( t ) =  
~ l u f ( t ) - u ~ ( t ) l  which is 1 if the spins in the two lattices are different, and zero if they 
are equal. The total damage is defined as D ( t )  = (1/N) Xi d i ( t ) ,  where N is the number 
of nodes in each of the two lattices A and B. 

Coniglio et a/ [6 ]  have demonstrated that with heat bath dynamics, the total damage 
D(r )  heals, i.e. goes to zero with increasing time, if the temperature T is larger than 

achieved by showing that as f +CC the probability for a site to be damaged is equal to 
the spontaneous magnetization M. 

Following Boissin and Herrmann [Z] we consider an L x L lattice. In the x direction 
we introduce periodic boundary conditions. In the y direction, we add an extra row 
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for y = 0 where all spins are fixed, i.e. they are not updated. Thus, the spins in the row 
y = 1 behave as if interacting with an external magnetic field imposed at the y = O  
boundary. The spins belonging to the upper row y = L form a free boundary. We now 
introduce a linear temperature gradient along the y direction, i.e. spins belonging to 
row y are held at a temperature 

where the gradient g = ( TmaX - Tmjn)/(L- 1). The minimum and maximum temperatures 
are chosen so that Tmi, < Tc< T,.,. In our numerical experiments, we typically set 
Tmi.=0.5T, and T,.,= 1.5Tc. In order to study damage propagation in this system, 
we set up two identical lattices, A and B, with identical initial spin configurations, 
except that in lattice A we let the spins along row y = 0 be +I  while those of lattice 
B are set to -1. 

As these two lattices develop in time, damage will propagate into the lattice from 
the 'permanently damaged' row y = 0 ( T  = Tmin), eventually to settle into a steady state 
in the region where T >  T,. Since the damage front covers the critical region, its 
fluctuations as a function of time are critical and will, therefore, yield critical properties. 

Boissin and Herrmann [6] (BH) studied the behaviour of the damage in this region 
by identifying the cluster of damaged spins that are connected to the permanently 
damaged spins at y = 0, called the 'infinite cluster'. This was done by invoking the 
burning algorithm [7] at each Monte Carlo time step. Two damaged nodes belong to 
the same cluster if there exists a continuous path between them touching only damaged 
nodes. The infinite cluster has an outer boundary against the nodes that are connected 
to the row y = L through continuous paths touching only undamaged nodes; see figure 
1. Each node k belonging to this outer boundary, called a front, has a well defined 
temperature Tk( 1 )  associated with it. BH then defined an average temperature TBH = 
(l /L)~.,(T,(t))andawidth W ~ ~ = ~ ( I / L ) ~ , ( ( T , ( ~ ) - T ~ , ) ~ ) .  Here( ... )isanaverage 
over time. As the gradient g-b 0, TBH + T, and wBH = g'-b. The exponent b was measured 
to be 0.51*0.01. This value is consistent with 

. 

. Y  0 =- 
I f w  

(2j 

where Y = 1, is the correlation length critical exponent for the ZD king model. This 
exponent relation follows if the width of the front is proportional to the correlation 
length at TBH [8 ] .  

Our method deviates from the method of BH first and foremost in that we do  not 
identify an 'infinite' cluster of connected damaged sites. The spreading of damage in 
a d-dimensional spin system may be viewed as a complex directed growth process in 
(d+ 1) dimensions, where the extra dimension is time. That is, in a spacetime diagram 
the damage shows a connected tree-like structure where the branches always stretch 
in the positive time direction. With such a picture in mind, it is not entirely clear what 
is the physical significance of spatially connected clusters at a given time slice 1. 

problem is quantitatively different from the king problem at hand, qualitatively they 
are very similar: the connected 'damage-tree' of the spin problem is analogous to the 
percolating cluster in the directed percolation problem. Thus, we analyse the Ising 
model in the same way as was done for the directed percolation problem in [41. 

r- r.41 / 1 1 1 \  .4:-a-a:--nn >:--&-A ---m-t..6:-.. ... "- ---I..e-A D..n- th-.snh +h:i 
111 L*,, \LT  ,,-U ,111 ~, ,3 ,"' ,P,  UIITbLTY yrLr"rPL,"lr W P 1  P..O.J"'Y. k"*U ' . L " U p .  &..LO 
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Figom 1. The damage configuration d,(t) at some time 1. T h e  row at the bottom of the 
figure is permanently damaged, and there is a temperature gradient from the bottom to 
the top of the figure. Tlle damaged nodes an marked with either a filled circle, an open 
circle or a filled square. T h e  nodes belonging to the damage front as defined in this paper, 
are marked by open circles, while those belonging to that defined by Boissin and Hemann 
[Z] are marked by the filled squares. Some nodes belong to bath fronts, as is evident from 
the superposition of the two symbols. Note that the bottom boundary is at a temperature 
T,,., and the top is at T,... 

Rather than define the front through identifying the infinite spatial cluster, we 
define the position of the front at the coordinate x (measured parallel to the damaged 
line) as node with the largest y coordinate which is damaged; see figure 1. Thus, the 
position of the front defined this way becomes a single-valued function, y = y ( x ,  t ;  g ) ,  
which is also a function of the temperature gradient g. The temperature corresponding 
to y ( x ,  t ;  g) is defined by T(x ,  f ;g)=  T,, .+g[y(x,  I; g)-11. The average position of 
this front, measured in  terms of temperature is 

We also define the front width as 

_.. In figxe .. 2 w e  r h ~ w  T,, as a function of 4; and in figure 3 a log-log plot of w(g!  as 
a function of l / g .  The data are based on lattices ranging from L = 30 to 200, each with 
lo5 Monte Carlo time steps.The Tenextrapolates to T,= 2.27*0.01, whereas the correct 
valueis TC=2.269185.Figure3showsthat w(g)-g ' - ' .  with 6=0.48*0.01.Thisvalue 
agrees with the exact value, 6=4, obtained from equation (2). Thus, we conclude that 
the definition of the damage front presented here is a sensible one. 

In [3,4] the concept of an overhang in connection with directed processes was 
introduced. In terms of the king model, an overhang j ( x ,  f ;  g )  is defined as the difference 

( 5 )  
That is, it is the difference in the position of the front between two consecutive Monte 
Carlo time steps. In [4] it was argued that measuring the statistics of such overhangs 

Ax, t ;  g ) = y ( x ,  1 ;  g ) - y ( x .  ?-I;%). 
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Figurt 2. .me average position of the front measured 
in terms of temperature platted against the square 
root of the temperature gradient g. The linear fit- 
represented by the Straight line--extrapalates to T, = 

Figme 3. The width of the front measured in terms 
of temperature as a fundion of the inverse of the 
temperature gradient S. The slope of the straight line 
is 0.52 +0.01. 

2.27 for g-0. 

measures the fractal structure of the directed process. This fractal structure is in turn 
connected with the order parameter exponent $ and the correlation length exponent 
U. In particular, it was argued that the probability per row and per unit time, N+(j ,  g), 
to find an overhang of size j ,  in a ( d  + 1)-dimensional directed process, is given by the 
scaling function 

W j ,  g )  =j-"n&gb) (6)  

where the subscript f refers to positive or negative overhangs, and the crossover 
function n ,  approaches analytically a constant for small arguments, and going to zero 
faster than any power law for large arguments. The exponent b is that of equation (2), 
and a is given by 

(7) 

as long as the ratio p /  U c 1. In the two-dimensional king model, /3 = i, so that a = y. 
By measuring the overhang distribution, the exponents (I and b may be determined, 

and subsequently U and p. In practice, the best way to measure N+( j ,  g) is by measuring 
its moments. The kth moment of the positive overhangs is given by 

a =4- d -$/ U 

CO ro 
( j * ( g ) ) + =  jkN+(j ,g)=gb'"-*-' '  j * n + ( j )  = 

1-0 j - 0  

where 

7 k  
y(k) = b(k + 1 - a )  = -+- 

16 2 

using the values of a and b for the two-dimensional king model. In figure 4 we show 
the second, fourth and sixth moments of the positive overhang distribution, measured 
for lattices of size ranging from L = 10 to L = 200, each with 2 x 10' Monte Carlo 
updates, a run requiring approximately two days on a medium-sized workstation. It 
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Flgnn 4. The second, founh and sixth moments of the positive overhang distribution, 
N+(j, 9) .  plotted as a function of I/g. The slopes of Ihe best fils are respectively y(2 )  = 
0.55*0.01, y(4)= 1.56+0.01, and y(6)=2.55+0.01. 

was also easy to write a parallel code that ran very efficiently on the Connection 
Machine CM2 and CM5. We determined the exponent y(k) for all values of k between 
two and six, by least-squares fits as those shown in figure 5.  In particular, we found 
y ( 2 )  =0.55*0.01, y ( 3 ) =  1.05*0.01, y(4)= 1.56*0.01, y(5)=2.05*0.01, and y(6)= 
2.55k0.01. A best fit of these exponents is y(k)=-0.45+0.50k, which should be 
compared with equation (9). predicting y ( k )  = -0.437+0.500k Using equations (9). 
(7) and (2) leads to our numerical determination U = 1.00 and p =0.10, in excellent 
agreement with the exact values Y = 1 and p =0.125. 

What happens if one uses Metropolis dynamics instead of heat bath? A major 
difference between these two is that unlike heat bath, in Metropolis the damage does 
not heal for T >  T,. It is, therefore, possible to have the damaged wall on the hot 
boundary, and the damage front propagating from the hot side. Doing that, and 

h 

Figure 5. y(k) as a function of k me straight line is a best fit y(k) = -0.45f0.50k 
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performing the simulations and data analysis the same way as for heat bath we obtain 
v =$ the meanfield value. Furthermore, equation (7) fails to give a non-zero value for 
p because it is based on hyperscaling which is violated by mean field. The reason for 
the mean-field results becomes apparent if we look at the average location of the 
hot-side damage front. This front is stopped in the hot side, short of the critical region 
by the big magnetization domains that form in the cold regions. Since the front is close 
to, but not in, the critical region it sees the mean-field properties of the phase transition. 
We, next, tried the simulation with the damage source on the cold wall, and the damage 
front propagating from the cold side, like the heat bath case. What happened here is 
the following. The damage front propagated from the cold side along domain walls 
and settled into an equilibrium position that covered the critical region, suggesting 
that fluctuations will be critical. However, damage leaked into the hot side, where it 
spread and formed hot-side damage clusters with their mean-field behaviour. The 
hot-side and coid-side ciusters interacted, and the criticai exponents we obtained 
seemed to be averages of the mean-field and true exponents. In short, Metropolis 
dynamics is much harder to use in this application than heat bath. 

To conclude, we introduced a numerical method for determining the critical 
exponents U and p in addition to the critical temperature in spin models. Unlike 
previous methods, which could determine U and T, but not p ,  our method is based 
on the dynamics of damage spreading and the overhangs that develop in the damage 
front in the presence of a temperature gradient. The method is very simple, and leads 
to accurate results with little computational effort. Finally, we mention that since the 
behaviour of the damage spreading is qualitatively the same as that of directed 
percolation, it should be possible to measure the dynamic critical exponent, z, by 
imposing a temperature gradient along the time direction [9]. 

We thank L de Arcangelis and S Roux for many helpful discussions. D Bideau and 
P Devillard are also thanked for a critical reading of the manuscript. 
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